Neurobiological Foundations for EMDR Practice
Uri Bergmann, PhD, is in full-time private practice, in Commack and Bellmore, New York. He is an EMDR Institute Senior Facilitator and Specialty Presenter as well as an EMDR International Association Approved Trainer and Consultant in EMDR. He is a lecturer and consultant on EMDR, the neurobiology of EMDR and the integration of EMDR with psychodynamic and ego-state treatment. Dr. Bergmann has authored and published articles on the neurobiology of EMDR in peer-reviewed journals and has contributed chapters to various books on EMDR. He is a member of several journal editorial boards.

Dr. Bergmann is a past-president of the EMDR International Association (EMDRIA) and is currently serving as an advisory-director to the board of directors.
To my family,
the source of my purpose, pride, joy, and inspiration.
Preface xiii
Acknowledgments xv

1. Introduction 1
 Consciousness and EMDR 2
 The Progress of Science 3
 Mind and Brain 3
 Scientific Growth of EMDR 4
 Outline of the Book 5

2. What Is Consciousness? 7
 The Mystery of Consciousness 7
 Neuropsychology: Localization of the Biological Source of Mental Function 8
 Neuroanatomy: Patterns of Connectivity in Information Processing Stages 8
 Neurophysiology: Uncovering Cellular Representations of the World 10
 Consciousness and Evolution 11
 Characteristics of Consciousness 11
 Prediction at Work 12
 Prediction and EMDR 13

3. Cellular Communication 15
 The Neural Environment 15
 Origin of Neurons 15
 Neuronal Structure 16
 Neuronal Voltage 17
 Plasma Membrane 18
 Electrical and Chemical Gradients 18
 Ionic Channels/Gates 18
 Neural Signaling 19
 Resting Potential 19
Changes in Polarization 19
Synapses and Synaptic Transmission 20
Types of Synapses 21
Types of Potentials 21
Synaptic Structure 21
Chemical Synapses and Cellular Communication 21
Neurotransmission 22
Excitatory Versus Inhibitory Neurotransmitter Function 23
Transmitter Systems and Function 24
Nontransmitter Chemical Signaling 25
Electrical Potentials 26
Synaptic Potentials 26
Comparison of Action and Synaptic Potentials 27
Electrochemical Nature of Signaling 27
Electrical/Electronic Synapses and Neural Synchronization 27
Comparing Gap Junctions and Chemical Synapses 27
Neural System Synchronization 29
Neuronal Oscillation 29
Coherence and Rhythmicity 30
Frequencies of Oscillations 31
Oscillatory Systems and Consciousness 32

4. Models of Information Processing 33
Foundations 33
Descriptive and Functional Anatomy 33
Medulla Spinalis—The Spinal Cord 33
The Amygdala 34
The Hippocampus 36
The Association Areas 37
The Thalamus 38
The Cerebellum 38
Brainstem Structures 39
Evolutionary Implications 40
Hydranencephaly 41
Primary Versus Reflective Consciousness 41
Implications for Medical Practice 42
Parallel Distributed Processing/Connectionism 43
Storage of Memory 43
Origins of PDP and Connectionist Theories 44
Parallel Processing and Neuroplasticity 46
Neural Mapping 47
Mapping and Images 47
The Structure of Maps 47
Neural Hardwiring Versus Neuroplasticity 48
5. **Consciousness** 55

Processing Our Outer and Inner Realities 55
Parallel Distributed Processing and Motor Function 55
Evolution of the Nervous System 56
Motricity and the Brain 56
Neural Automation and Fixed Action Patterns 57
Parallel Distributed Processing, Sensation, and Perception 58
Parallel Distributed Processing and Memory 61
Classifying Memory 61
Early Research on Memory 62
Habituation 63
Sensitization 63
Classical Conditioning 64
Studies of Habituation 64
Studies of Sensitization 68
Classical Conditioning 69
Long-Term Memory and Molecular Genetics 70
Explicit Memory Research 71
The Evolutionary Imperative 73
Human Long-Term Memory Storage 74
Structure of Memory 75
Engrams and Neural Linkage 75
Neural Dispositions 76
Memorial Consolidation and Long-Term Potentiation 77
Off-Line Memory Consolidation 77
Long-Term Potentiation of Human Memory 80
Parallel Distributed Processing and Emotion 80
Emotions Versus Feelings 80
Emotional Operating Systems 81
Emotions as FAPs 81
The Evolution of Biological Action Systems 82
Neural Criteria of Emotional Systems 82
Classifying Emotional Operating Systems 83
Neural Circuitry of Emotional Operating Systems, FAPs, and Dispositions 85
Orbitofrontal Function and Structure 85
Orbitofrontal Cortex Excitation and Inhibition 86
Triggering and Executing Emotions 87
Parallel Distributed Processing and Language 88
Abstraction 89
Prosody: The Origin and Foundation of Language 89
Human Language 90
Temporal Binding 91
Thalamocortical Temporal Binding of Specific and Nonspecific Thalamic Nuclei 91
From Neurons to Self 94
Neural Energy Consumption 95
The Essence of Consciousness 96
Forty-Hertz Activity and Sleep 96
Self-Emergence 97

6. Human Development 99
The Right Hemisphere 99
Visual Stimulation, Neural Synchrony, and Neural Development 99
Visual Gaze 100
The First Psychic Organizer 100
Attachment and Affect Regulation 101
Emotional Action Systems 102
Dopaminergic Arousal 102
Attachment, Play, and Neural Growth 103
Attachment, Play, and Endorphins 104
Attachment and Practicing—Transitions Within Symbiosis 104
Ontogenesis and Adaptation 105
The Second Organizer 106
Eight-Month Anxiety 106
Internal Imaging 106
Affect Regulation in the Second Year 107
Parental Socialization 107
Parasympathetic Development 108
The Third Organizer 109
Rapprochement 109
Maturation and Development of Neural Inhibition 110
The Vagus Nerve and Polyvagal Function 111
Vagal Evolution and Development 111
The Vagus Nerve 111
Vagal Inhibition, Sympathetic Arousal, and Emotional Operating Systems 113
Affective Regulation and Cardiac Dominance 114
Polyvagal Function and Dissolution 115
Orbitofrontal Affective Regulation 115
Left Hemispheric Dorsolateral Development 116
Unconscious Memorial and Affective Templates 116
7. Disorders of Consciousness 119
 Global Alterations of Consciousness 119
 Anesthesia 120
 Coma and Vegetative States 120
 Psychotraumatic Alterations of Consciousness 121
 Trauma and Dissociation 122
 Trauma, Attachment, and Personality 123
 Childhood Trauma and Development 124
 The Evolution of Biological Action Systems 124
 Systemic Organization 126
 The Nature of Dissociation 127
 The Description of Dissociation 128
 Developmental Lines of the Personality 129
 Reconciling Conflicting Views of Dissociation 133
 The Neurobiology of Primary Dissociation 133
 The Neurobiology of Secondary Dissociation 137
 Secondary Dissociation as a Developmental Disorder 138
 Genesis and Pathophysiology of Secondary Dissociation 138
 Manifestations of Secondary Dissociation 143
 The Neurobiology of Tertiary Dissociation 146
 Self-Fragmentation and Alter Personalities 147
 Emotional Action System Distortion 148
 Research 149
 Society and Trauma 149

8. Trauma and Medically Unexplained Symptoms 153
 Mysterious Medical Illnesses 153
 The Autonomic Nervous System 154
 The Endocrine System 154
 The Integration of ANS and Endocrine Systems 155
 The HPA Axis and Cortisol 155
 The Immune System 155
 Autoimmune Structure 156
 The Antiinflammatory–Inflammatory Balance 158
 The HPA Axis, Cortisol, and the Immune Balance 158
 Cytokines and Immunochemical Messaging 158
 Cortisol, Immune Function, and Stress 159
 Medically Unexplained Symptoms 162
 Patterns and Conclusions 169

9. Linking Consciousness, Neural Development, and Treatment 171
 Neural Development, Consciousness, and EMDR 171
 The AIP Model 172
 Linking PDP/Connectionism, Temporal Binding, and AIP 174
The Eight-Phase Protocol 175
Phase 1, History 175
Phase 2, Preparation 177
Type I PTSD 177
Mirror Neurons 183
Phase 3, Assessment 184
Dissociation and Self States 184
Phase 4, Desensitization 185
State Versus Trait Change 185
Neurotic, Personality, and Dissociative Disorders 185
Phase 5, Installation 187
Phase 6, Body Scan 188
Phase 7, Closure, and Phase 8, Reevaluation 188
Somatoform Symptoms Versus Medically Unexplained Symptoms 188
Medically Unexplained Symptoms and Medical Treatment 189
Medically Unexplained Symptoms and EMDR Treatment 189
Conclusions 190

10. Closing Thoughts 191
Evolution’s Glory 191
Evolution’s Compromise 192
The Challenge for Treatment 193

References 195
Index 217
Preface

Henry David Thoreau wrote, “Do not worry if you have built your castles in the air. They are where they should be. Now put the foundations under them.” This notion of dreaming and then following your imaginings has been the impetus for this book, an undertaking dedicated to constructing a neurobiological foundation for eye movement desensitization and reprocessing (EMDR) practice and research by integrating various research bases that have not, as yet, found themselves equally and comprehensively addressed in a published work. Twenty years of EMDR practice has made it undeniably apparent that in order to truly understand, practice, and research this astonishing and mysterious form of psychotherapy, one needs to be aware of and appreciate the neural mechanisms underlying consciousness and information processing, human development and attachment, disorders of information processing that manifest in the majority of the psychopathology treated by clinicians, trauma and dissociation, and the relationship of stress and trauma on immune function and health.

Given that EMDR is so profoundly guided by an information-processing model, it is crucial to examine how it measures up to researched neurobiological models of consciousness and information processing. The more that this model is seen to be consistent with neurobiological research (illustrated in later chapters), the more the model will be bolstered and grounded.

The best way to generate truly comprehensive neurobiological theoretical models of EMDR, which provide the best blueprints for research, is through a comprehensive consideration and understanding of the neural underpinnings of information processing. If we can ask how EMDR’s sensory stimulation and treatment protocol impact the central neural circuitry of information processing and facilitate its repair, we can generate detailed theories that are more amenable to research.

For centuries, society has recoiled from the notion that trauma and neglect are pervasive. A great deal of confusion exists in both our society and our profession regarding trauma, the extent and pervasiveness of familial neglect, and the nature of dissociative processes. Rather than understanding that our history as a human race is profoundly traumatic, we choose to believe
that we have survived and adapted. We apply the same lack of vision to our children, believing that come what may, they are resilient.

Within our various professions, academicians at the most prestigious universities tell us that traumatic and dissociative disorders are the creations of suggestive therapists and false memory syndromes. We in the traumatology community try to shed light on this darkness, but psychological and phenomenological explanations are insufficient. It is only through a neurobiological understanding that our ideas will be given the utmost credibility. We must, with respect to our practice, be able to understand and also illustrate clearly to others that the unusual and often bizarre symptoms that we label as traumatic and dissociative disorders are the outcomes of dysregulated, evolutionarily based, neural action systems that are completely predicated by the nature of the attachment between infants and their caretakers. This can be accomplished only by a neurobiological foundation that informs our understanding of human development, attachment, disorders of attachment, and information processing.

Finally, given the myriad manifestations of somatic symptoms and medical illnesses that many of our patients present with, understanding the relationship between stress, trauma, and immune function is imperative. It is crucial that we understand and are able to differentiate somatic or somatoform symptoms from the immunoinflammatory illnesses, which are now referred to as medically unexplained symptoms, such as fibromyalgia, systemic lupus erythematosus, reflex sympathetic dystrophy, Hashimoto thyroiditis, Graves’ disease, chronic fatigue syndrome, and others, which will be detailed in this book.

Understanding these illnesses and their differentiation from other somatoform symptoms has its greatest import with respect to treatment implications. Somatic symptoms, often conceptualized as manifestations of trauma in the body, are often effectively targeted and treated with EMDR, as part of a comprehensive and phased trauma treatment. However, patients presenting with psychological difficulties (whether or not trauma related) and medically unexplained symptoms must also be referred for treatment to endocrinologists, oncologists, or immunologists in order to attempt to reestablish the hyperimmune function in these patients, which is apparently causal with respect to their illnesses.

It is my hope that the information presented in this writing will be received as informative and clearly integrated, while the presentation of the subject matter provides for an ease of understanding.
First and foremost, I would like to begin by saluting and thanking Francine Shapiro for lighting and spreading the flame of eye movement desensitization and reprocessing (EMDR), a fire at which we and our patients have warmed ourselves and, thereby, grown.

I would also like to express my enormous admiration and gratitude to Robbie Dunton, Francine Shapiro’s right hand from the beginning, throughout the development of EMDR, and in the founding and continuance of the EMDR Institute.

To Sheri Sussman, executive editor at Springer Publishing, I would like to express my admiration and immense gratitude for her colossal assistance in the organization and editing of this book.

My profound thanks go to Tom Jennings for his invaluable assistance with major portions of the manuscript.

I would also like to thank my wife, Sherrill, and daughter, Danielle, for their vital creative assistance with portions of this book.

Finally, I would like to honor the spirit of my father, Berthold Bergmann, a dedicated physician whose lifelong amazement at the wonders of physiology and neurobiology infuse every aspect of my professional curiosity and every page of this book.
CHAPTER 1

Introduction

The human mind is difficult to investigate, but the biological foundations of the mind, especially consciousness, are generally regarded as the most daunting. Antonio Damasio (1999) has argued that if elucidating the nature of the mind is the last frontier of the life sciences, consciousness often seems like the last mystery in the illumination of the mind. He notes,

The matter of mind, in general, and of consciousness in particular, allows humans to exercise to the vanishing point, the desire for understanding and the appetite for wonderment at their own nature that Aristotle recognized as so distinctively human. What could be more difficult to know than to know how we know? What could be more dizzying than to realize that it is our having consciousness which makes possible and even inevitable our questions about consciousness? (p. 4)

Echoing this sentiment, Alan Hobson (2009) opines that “consciousness, we are relieved to admit, is finally a bona fide subject of inquiry. Let us take the first obvious step and teach it to study itself” (p. xi).

For Rodolfo Llinas (2001), consciousness is a function of mindness, driving him to ask,

Why is mindness so mysterious to us? Why has it always been this way? The processes that generate such states as thinking, consciousness, and dreaming are foreign to us, I fancy, because they always seem to be generated with no apparent relation to the external world. They seem impalpably internal. (p. 4)

Similarly, Alan Hobson (2009) observes,

The brain still tends to keep most of its activity out of consciousness, but what it excludes or admits is governed more by rules of activation, neuro-modulation, input–output gating than by the predominance of repression. The unconscious is now seen as a useful lookup system for the conscious brain rather than a seething source of devils aiming at the disruption of consciousness. Consciousness itself is, thus, a tool for the investigation of itself as well as for the study of that part of the unconscious that is dynamically repressed. (p. xi)
Throughout his writings, Sigmund Freud articulated his ideas through the organizing concepts of the “self” and the “object.” For Freud, the people interacting with the self were the objects of the self’s drives and desires. Ironically, neuroscientists today tend to view consciousness, from its basic levels to its utmost complexity, as the integrated neural function that brings together the object and the self.

Accordingly, Damasio (1999) opines,

At its elemental and most basic level, consciousness lets us recognize an irresistible urge to stay alive and experience a concern for the self. At its most profound and elaborate level, consciousness helps us develop a concern for other selves and improve the art of life. (p. 5)

Evolution, over these millions of years has given rise to our complex brain and, somehow, through the interactions among its 100 billion neurons, connected by trillions of synapses, our conscious experience of the world and of ourselves emerges.

Like it or not, consciousness is the pivotal biological function that allows us to know sorrow and joy, suffering and pleasure, embarrassment and pride, and grief and reunion. Damasio (1999) muses, “Do not blame Eve for knowing; blame consciousness, and thank it, too” (p. 4).

CONSCIOUSNESS AND EMDR

Consciousness and EMDR have been intimately related, albeit under a different name. Whereas the field of neurobiology has utilized the term consciousness to denote the processes of sensation, perception, learning, cognition, emotion, somatosensory integration, and memory; the discipline of psychology has chosen to use the term information processing. Accordingly, they will be used interchangeably. If we tend to favor the term consciousness in this book, it is only because it feels more human.

Throughout the past 20 years, EMDR has evolved into a therapeutic approach guided by the adaptive information processing (AIP) model (Shapiro, 2001). In 1990, the name change from eye movement desensitization to eye movement desensitization and reprocessing heralded a change in orientation from the initial behavioral formulation of simple desensitization of anxiety to a more integrated information processing paradigm. This evolution ushered in the accelerated information processing model, which illustrated a clinically grounded understanding of the underlying principles that govern perception and the integration of new information within cognitive, memorial, and emotional frameworks (Shapiro, 1995). In 2001, this continued evolution brought us the aforementioned adaptive information processing model. Regarding these models, Francine Shapiro (2001) has argued that “their utility lies in their ability not only to explain, but to predict clinical outcomes” (p. 14).
As we shall see, as this book develops, consciousness and EMDR are inex-tricably intertwined, giving us an information processing paradigm that provides an integrated approach that can incorporate and interpret key aspects of such diverse modalities as psychodynamic, behavioral, cognitive, gestalt, ego-state, and body-oriented therapies. If the neurobiology of consciousness enables our understanding of the neural interrelationship between self and object, EMDR has given us both tools and mysteries to solve in the repair of the self and its relation to its objects.

THE PROGRESS OF SCIENCE

Reflecting on the foregoing, it becomes apparent that the understanding of the human mind in biological terms has emerged as one of the most important challenges for science in the 21st century. Our goal in this endeavor has been to understand the biological underpinnings of sensation, perception, cognition, learning, memory, emotion, and sensory integration.

The progress that researchers have made in the field of neuroscience, unthinkable even a few decades ago, has made possible our present understanding. The discovery of the structure of DNA in 1953 revolutionized biology, giving it a foundational framework for comprehending the mechanisms underlying the gene’s ability to control the functioning of cells. This breakthrough led to a basic understanding of gene regulation and gene-related cell function, propelling an understanding of the science of biology to a level rivaling that of physics and chemistry.

Imbued with this knowledge, biology turned its focus to its loftiest goal, the understanding of the biological nature of the human mind. This endeavor, once considered to be prescientific and impossible, has achieved great momentum and growth. Ironically, these new insights did not come from the disciplines traditionally concerned with mind, from philosophy or psychology. Instead, they evolved from the merger of these disciplines with the biology of the brain, a new synthesis made possible by the remarkable achievements in molecular biology. The result has been a new science of mind, a science that has harnessed the power of molecular biology to examine the great remaining mysteries of life.

MIND AND BRAIN

This new science is grounded by five principles. First, mind and brain are inseparable. The brain is a multifaceted biological organ of vast computational abilities that constructs our sensory experiences, regulates our thoughts and emotions, and mediates our actions. Our brain is responsible not only for motor behaviors such as running and eating but also for the complex and
multifaceted acts considered quintessentially human, such as thinking, speaking, and creating works of art.

Second, each mental function in the brain, from the simplest reflexes to the most creative acts in language, music, and art, is carried out by specialized neural circuits throughout different regions of the brain. It has been noted by many in the neuroscience community that it is preferable to use the term biology of mind to refer to the set of mental operations carried out by these specialized neural circuits rather than biology of the mind, which can be seen to inaccurately connote that there is a unique or singular place, a single location in the brain, that carries out mental operations.

Third, all of these circuits are composed of the same elementary signaling units, the neuron. Fourth, these neural circuits use specific molecules to generate signals within and between nerve cells. Finally, the specific signaling molecules have been conserved and retained through millions of years of evolution. Some of them were present in the cells of our most ancient ancestors and can be found today in our most distant and primitive evolutionary relatives.

Hence, we gain from this new knowledge regarding the science of mind not only insights into ourselves—how we perceive, learn, remember, feel, and act—but also a new viewpoint of ourselves within the context of biological evolution. Accordingly, this allows us to appreciate that the human mind evolved from molecules used by our most primitive ancestors and that the extraordinary conservation of the molecular mechanisms that regulate life’s various processes also applies to our mental life.

In a similar vein, the search for EMDR’s mechanisms of action began in the early 1990s, initially proceeding slowly and tentatively. As we entered the new millennium, the pace quickened. Theoretically driven speculative models, grounded in empirical findings from related neurobiological research bases, became more detailed and prevalent. In parallel, neurobiological studies became increasingly widespread, utilizing psychophysiological and neuroimaging examinations of EMDR treatment.

In the past decade, it has become increasingly apparent that people lacking a background in science are as enthusiastic to learn about this new knowledge regarding the science of mind and consciousness as scientists are to explain it.

SCIENTIFIC GROWTH OF EMDR

A similar phenomenon can be seen in the EMDR world. In the beginning, few were interested in the neurobiology of EMDR. A talk speculating on EMDR’s neural mechanisms would attract 30 people, on a good day. As in other aspects of neuroscience, this interest has exploded. Hundreds are now in attendance at EMDR workshops currently held worldwide, solely focused on the topic of the neurobiology of EMDR. Hence, these occurrences have made it apparent
that nonscientists are prepared to make the effort to understand the key issues of brain science if scientists are willing to make the effort to explain them.

OUTLINE OF THE BOOK

Thus, this book is written both technically and as an introduction to the neural underpinnings of consciousness and EMDR. These knowledge bases have emerged from theories and observations and have evolved into the experimental science of today. Pertinent neuroscience research relative to our understanding of consciousness, information processing, and traumatic disorders of consciousness will be reviewed and examined.

The reader will first be presented with basic research in the neurosciences relevant to online/wakeful information processing, which includes sensation, perception, somatosensory integration, cognition, memory, emotion, language, and motricity (motor function). In addition, offline/sleep information processing will be examined with respect to slow-wave sleep and cognitive memorial processing as well as REM/dream sleep and its function in emotional and semantic memory processing.

The second section will examine the neuroscience research relevant to disorders of consciousness, which includes (in brief) anesthesia, coma, and other neurological disorders. Major focus will be given to the disorders of type I posttraumatic stress disorder (PTSD), complex PTSD/dissociative disorders, and personality disorders.

The reader, in the third section, will be presented with an examination of neuroscience research relevant to chronic trauma and autoimmune function. Particularly, a number of medical illnesses, collectively known as medically unexplained symptoms, will be examined, which include fibromyalgia, chronic fatigue syndrome, reflex sympathetic dystrophy, systemic lupus erythematosus, and rheumatoid arthritis. These disorders will be examined from the perspective of autoimmune hyperactivity resulting from the unusual neuroendocrine profile of persons with PTSD.

The fourth and final section will examine the foregoing material with respect to the adaptive information processing model. Treatment implications vis-à-vis the various types of PTSD and the presentations of medically unexplained symptoms will be explored in detail.

To the reader who is fluent in this material, it will become immediately apparent that my thinking has been greatly influenced by the works of Antonio Damasio, Rodolfo Llinas, Jaak Panksepp, and Allan Schore. Their empirical and descriptive writings have enabled me to extract form out of the empirical chaos that has engulfed the study of consciousness and information processing.